Segmentação por entropia de Tsallis através de MRF para o parcelamento de ressonância magnética cerebral

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Azimbagirad, Mehran
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
MRI
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27092019-102750/
Resumo: A quantificação das alterações do volume do tecido intracraniano na ressonância magnética (RM) auxilia os especialistas a analisar os efeitos das alterações naturais ou patológicas. Como essas alterações podem ser sutis, a precisão do método de compartimentação influencia os estudos para analisar e quantificar os tecidos cerebrais. Nesta tese, revisamos os métodos recentes de segmentação do cérebro usados em ferramentas de imagens médicas. Em seguida, investigando a origem dos erros que podem ocorrer nos algoritmos de segmentação revisados, um pipeline híbrido é proposto para mitigar a influência desses erros. No primeiro capítulo, alguns pré-requisitos sobre estatística e modelos estatísticos e, em seguida, dois estimadores mais utilizados para os parâmetros do modelo são ilustrados. O segundo capítulo explica o uso de um modelo estatístico para segmentar imagens cerebrais. Além disso, as desvantagens desses métodos são discutidas. No terceiro capítulo, propomos um método de segmentação baseado na q-entropia modificada através de um campo aleatório modificado de Markov (Mqe-MMRF) para melhorar a precisão da parcela dos tecidos cerebrais. No último capítulo, os métodos propostos foram submetidos a duas estratégias para avaliar Mqe-MMRF, ou seja, uma simulação de diferentes níveis de ruído em dados de ressonância magnética e um conjunto de vinte dados de ressonância magnética disponíveis a partir de MRBrainS13 como desafio de segmentação de tecido cerebral. Nós acessamos nove métricas de qualidade de segmentação em comparação com delineamentos de tecidos de referência para avaliar o Mqe-MMRF. As simulações de ruído de ressonância magnética mostraram apenas 4,8 \\% de decréscimo nas métricas de pontuação de segmentação após a adição de artefatos de ruído de 40 \\% e 9 \\% de não uniformidade e de ruído Gaussiano, respectivamente. Para cinco sujeitos de treinamento, encontramos melhoras significantes médias nas métricas de similaridade, para cérebro inteiro 0,78, Matéria Branca 2,91, Matéria Cinzenta 3,85 e Líquido Cefalorraquidiano 3,83 \\% (p-valores <0,02) nas métricas quando o Mqe-MMRF é comparado a métodos estado da arte. O Mqe-MMRF foi realizado em 15 outros sujeitos reais no desafio on-line MRBrainS13, e os resultados mantiveram uma classificação mais alta do que as ferramentas de referência, ou seja, FreeSurfer, SPM e FSL. Como o método proposto melhorou a precisão da segmentação do cérebro e classificou o melhor desempenho para GM, ele pode ser usado em estudos morfológicos quantitativos do cérebro