Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Barbieri, Aires Eduardo Menani |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-21032024-134753/
|
Resumo: |
A teoria de superfícies mínimas e, mais geralmente, de superfícies de curvatura média constante em R3 tem suas raízes no cálculo variacional introduzido por Euler e Lagrange no século 18 e nos estudos seguintes devidos a Enneper, Riemann, Weierstrass, dentre outros, no século 19. Várias questões globais e conjecturas que surgiram dessa teoria clássica foram resolvidas somente nos últimos anos. Neste trabalho, estudamos alguns resultados sobre superfícies completas de curvatura média constante no espaço Euclidiano R3 e, mais geralmente, em espaços homogêneos tridimensionais, cuja curvatura Gaussiana não muda de sinal. |