Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Sander, Gabriela Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18062009-104245/
|
Resumo: |
A teoria das transforma»ções de superfícies de curvatura constante começou, no fim do século XIX, com o trabalho [3] de A.V. Bäcklund e, em seguida, recebeu importantes contribuições por parte de diversos geômetras, entre eles, L. Bianchi e C. Guichard (veja, por exemplo, [5, 6, 7, 17]). Nessa dissertação apresentamos alguns dos mais importantes resultados desse tópico da geometria diferencial que estão relacionados às superfícies de curvatura média (ou gaussiana não nula) constante. Tais superfícies estão associadas a soluções de equações diferenciais parciais de segunda ordem e não lineares. A interpretação analítica da teoria das transformações de superfícies de curvatura constante nos capacita obter soluções dessas equações diferenciais parciais a partir de uma outra dada, mediante integração de um sistema de equações diferenciais, chamado transformação de Bäcklund. Então, os teoremas de permutabilidade fornecem uma \"fórmula de superposição\" para a construção algébrica de novas soluções |