Sobre a teoria das transformações de superfícies de curvatura constante

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Sander, Gabriela Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18062009-104245/
Resumo: A teoria das transforma»ções de superfícies de curvatura constante começou, no fim do século XIX, com o trabalho [3] de A.V. Bäcklund e, em seguida, recebeu importantes contribuições por parte de diversos geômetras, entre eles, L. Bianchi e C. Guichard (veja, por exemplo, [5, 6, 7, 17]). Nessa dissertação apresentamos alguns dos mais importantes resultados desse tópico da geometria diferencial que estão relacionados às superfícies de curvatura média (ou gaussiana não nula) constante. Tais superfícies estão associadas a soluções de equações diferenciais parciais de segunda ordem e não lineares. A interpretação analítica da teoria das transformações de superfícies de curvatura constante nos capacita obter soluções dessas equações diferenciais parciais a partir de uma outra dada, mediante integração de um sistema de equações diferenciais, chamado transformação de Bäcklund. Então, os teoremas de permutabilidade fornecem uma \"fórmula de superposição\" para a construção algébrica de novas soluções