Fibrados hiperbólicos e a Conjectura Gromov-Lawson-Thurston

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Chiovetto, Philipy Valdeci
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-16022021-114728/
Resumo: Um importante problema em aberto em geometria hiperbólica é saber quando um fibrado de discos sobre uma superfície orientável possui métrica completa de curvatura constante negativa. A conjectura Gromov-Lawson-Thurston diz que um fibrado de discos M → S sobre uma superfície fechada conexa orientável S de gênero g ≥ 2 admite tal métrica se, e somente se, ΙeM/XSΙ ≤1. No artigo (ANANIN; CHIOVETTO, 2018), construímos novos exemplos nos quais ΙeM/XSΙ = ⅗, melhorando assim a maior cota superior conhecida anteriormente (ΙeM/XSΙ = ½, devida a Feng Luo (LUO, 1992) e obtida em 1992). Nesta dissertação, apresentamos o artigo (ANANIN; CHIOVETTO, 2018