Empacotamento de árvores em grafos completos

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Gómez Diaz, Renzo Gonzalo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03022015-115100/
Resumo: Nesta dissertacao estudamos problemas de empacotamento de arvores em grafos, com enfase no caso de grafos completos. Denotamos por Ti uma arvore de ordem i. Dizemos que existe um empacotamento de arvores T1, . . . , Tn num grafo G se e possivel encontrar em G subgrafos H1, . . . , Hn, dois a dois disjuntos nas arestas, tais que Hi e isomorfo a Ti. Em 1976, A. Gyarfas e J. Lehel levantaram a seguinte questao, que conjecturaram ter uma resposta positiva: e possivel empaco- tar qualquer sequencia de arvores T1, . . . , Tn no Kn? Esta dissertacao tem como tema principal os estudos realizados por diversos pesquisadores na busca de uma resposta para esta pergunta, que permanece ainda em aberto. Tendo em vista a dificuldade para tratar esta questao, surge natural- mente a pergunta sobre a existencia de classes de arvores para as quais a resposta e afirmativa. Nessa linha, existem diversos resultados positivos, como por exemplo quando queremos empacotar estrelas e caminhos, ou estrelas e biestrelas. Por outro lado, em vez de restringir a classe das arvores, faz sentido restringir o tamanho da sequencia e reformular a pergunta. Por exemplo, dado s < n, e possivel empacotar qualquer sequencia de arvores T1, . . . , Ts no Kn? Em 1983, Bollobas mostrou ? que a resposta e afirmativa se s <= n / sqrt(2). Na primeira parte deste trabalho focamos nosso estudo em questoes desse tipo. Na segunda parte desta dissertacao investigamos algumas conjecturas que foram motivadas pela pergunta levantada por Gyarfas & Lehel. Por exemplo, Hobbs, Bourgeois e Kasiraj formularam a seguinte questao: para n par, e possivel empacotar qualquer sequencia de arvores T1, . . . , Tn no grafo bipartido Kn/2,n-1? Para essa pergunta apresentamos alguns resultados conhecidos analogos aos obtidos para a conjectura de Gyarfas & Lehel. Mais recentemente, Gerbner, Keszegh e Palmer estudaram a seguinte generalizacao da conjectura original: e possivel empacotar qualquer sequencia de arvores T1, . . . , Tk num grafo k-cromatico? Neste trabalho estudamos essas e outras questoes relacionadas e apresentamos os principais resultados que encontramos na literatura.