Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Enju, Rodrigo Aparecido |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-15032023-190119/
|
Resumo: |
Um resultado de Erdos demonstra a existência de grafos com número cromático e cintura arbitrariamente grandes. Temos então que um clique suficientemente grande contém um grafo com número cromático e cintura grandes como subgrafo, porém muitos grafos de interesse não necessariamente contém cliques grandes, então é interessante encontrar outra condição que garanta a existência de subgrafos com número cromático e cintura grandes. Uma conjectura de Erdos e Hajnal diz que todo grafo com número cromático suficientemente grande contém um subgrafo com número cromático e cintura grandes. O objetivo deste trabalho é estudar tal conjectura. O texto começa com uma breve apresentação de construções livres de triângulos. Em particular, é demonstrada uma construção de Codenotti, Pudlák e Resta, por meio de planos projetivos. O tópico principal do texto começa com uma demonstração de Rödl de que todo grafo com número cromático suficientemente grande contém um subgrafo livre de triângulos e com número cromático grande. Em sequência, apresentaremos uma demonstração de que grafos com número cromático suficientemente grande contém algum circuito ímpar grande. Apresentaremos também um resultado de Mohar e Wu, que demonstra que a família dos grafos de Kneser respeita a conjectura de Erdos e Hajnal. Outro resultado apresentado é de Gábor Tardos, demonstrando que a família dos shift graphs respeita a conjectura de Erdos e Hajnal. E por fim apresentaremos alguns breves resultados sobre os type graphs, mostrando casos que respeitam a conjectura de Erdos e Hajnal. |