Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Cheang, Rafael Molinari |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-15022024-105731/
|
Resumo: |
Jogos de incentivos mistos compreendem um subconjunto de jogos em que os incentivos individuais e coletivos não estão totalmente alinhados. Esses jogos são relevantes porque ocorrem com frequência no mundo real, bem como em sistemas multiagentes, e seus resultados poderiam ser melhores para as partes envolvidas caso aspectos coletivos fossem considerados. Instituições e normas oferecem boas soluções para governar sistemas com incentivos mistos, mas na literatura, são usualmente estudadas e incorporadas de forma distribuída. Neste trabalho, propomos um framework para melhorar os resultados coletivos obtidos em ambientes de aprendizado por reforço multiagente de incentivos mistos. O framework propõe aprimorar o ambiente com um sistema normativo controlado por um agente externo de aprendizado por reforço. Ao empregá-lo, mostramos que é possível alcançar bem-estar social usando apenas arquiteturas tradicionais de agentes de aprendizado por reforço, mesmo em um sistema formado apenas por agentes egoístas. |