Um framework para concepção e aplicação de normas centralizadas para governar ambientes de aprendizado por reforço de incentivo misto.

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Cheang, Rafael Molinari
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-15022024-105731/
Resumo: Jogos de incentivos mistos compreendem um subconjunto de jogos em que os incentivos individuais e coletivos não estão totalmente alinhados. Esses jogos são relevantes porque ocorrem com frequência no mundo real, bem como em sistemas multiagentes, e seus resultados poderiam ser melhores para as partes envolvidas caso aspectos coletivos fossem considerados. Instituições e normas oferecem boas soluções para governar sistemas com incentivos mistos, mas na literatura, são usualmente estudadas e incorporadas de forma distribuída. Neste trabalho, propomos um framework para melhorar os resultados coletivos obtidos em ambientes de aprendizado por reforço multiagente de incentivos mistos. O framework propõe aprimorar o ambiente com um sistema normativo controlado por um agente externo de aprendizado por reforço. Ao empregá-lo, mostramos que é possível alcançar bem-estar social usando apenas arquiteturas tradicionais de agentes de aprendizado por reforço, mesmo em um sistema formado apenas por agentes egoístas.