Redução de modelos de simulação de eventos discretos na sua concepção: uma abordagem causal.

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Chwif, Leonardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3132/tde-24072024-070842/
Resumo: A simulação de Sistemas de Eventos Discretos é uma ferramenta bem conhecida e utilizada, por sua habilidade inerente de avaliar sistemas complexos e considerar seu comportamento dinâmico. Por outro lado, possui um inconveniente: o tempo para se completar um estudo de simulação é considerado longo mesmo com o desenvolvimento atual de hardware e software de simulação. Assim, ações são tomadas em alguns casos de processos decisórios que dependem de simulações, antes do estudo apropriadode simulação ter sido completado. Neste cenário onde há uma demanda para se diminuir o tempo de resposta de um estudo de simulação, métodos de simplificação de modelos de simulação possuem um papel fundamental. O objetivo deste trabalho é propor uma técnica para reduzir a complexidade de um modelo de simulação de eventos discretos, na fase de concepção de um estudo de simulação, implicando-se que os resultados computacionais do modelo não são conhecidos a priori para o processo de redução. Para permitir o ganho de tempo proposto, esta técnica deve ser passível de implementação em um computador. A escolha de uma técnica apropriada de representação de modelos de simulação, que suporte o processo de redução, também faz partedo escopo deste trabalho. Os resultados obtidos mostraram a viabilidade da técnica de redução proposta, podendo auxiliar especialmente analistas não experientes na construção de modelos mais simples. Apesar da importância deste assunto, a falta de pesquisa nesta área é uma constante. Este trabalho pode servir como incentivo a futuros pesquisadores que desejam adentrar neste tema.