Novas metodologias de simulação do tipo Monte-Carlo via séries de Neumann aplicadas a problemas de flexão de placas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Kist, Milton lattes
Orientador(a): Silva Júnior, Cláudio Roberto Ávila da lattes
Banca de defesa: Silva Junior, Cláudio Roberto Ávila da, Beck, André Teófilo, Deus, Hilbeth Parente Azikri de, Lima, Key Fonseca de
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1928
Resumo: A engenharia é um campo muito rico e vasto em problemas. Mesmo considerando-se apenas o ramo da engenharia estrutural, a quantidade e a variabilidade de problemas continuam sendo muito grande. O aumento da capacidade computacional proporcionou, nos últimos anos, o desenvolvimento de métodos mais complexos e robustos (métodos estocásticos) para resolução de problemas na área de estruturas passando a considerar incerteza. A incerteza pode ser devido à aleatoriedade das propriedades materiais, condições de apoio e carregamento. Muitos dos métodos estocásticos são baseados na simulação de Monte-Carlo, no entanto o método de Monte-Carlo direto possui custo computacional elevado. Visando o desenvolvimento de novas metodologias para resolução de problemas da área de estruturas, neste trabalho de tese apresentam-se três novas metodologias aplicadas a problemas estocásticos de flexão de placas, caracterizando assim a contribuição científica da tese. Estas metodologias, denominadas de Monte Carlo-Neumann, com ajuste no limitante; Monte Carlo-Neumann, mista 1 e Monte Carlo-Neumann, mista 2, utilizam a série de Neumann associada ao método de Monte-Carlo. Para verificar a eficiência quanto a precisão e ao tempo computacional, as metodologias foram aplicadas em problemas estocásticos de flexão de Placas de Kirchhoff em bases de Winkler e de Pasternak, considerando-se aleatoriedade sobre a rigidez da placa e sobre os coeficientes de rigidez da base de apoio.