Estudo comparativo entre a Simulação Sequencial Gaussiana e a Simulação Baseada em Wavelets aplicado a quantificação de minério de Cu em um depósito sintético

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Takafuji, Eduardo Henrique de Moraes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/44/44137/tde-22092015-145130/
Resumo: O julgamento da qualidade de um método de estimativa/simulação é mais adequado se os resultados puderem ser comparados a dados reais. Uma vez que na mineração isto é inviável, este trabalho é baseado em um modelo de depósito mineral de cobre - representando a geologia e a distribuição de dados de modo heterogêneos. O modelo reproduz um depósito com preenchimento hidrotermal em uma falha inversa e as rochas encaixantes são meta-arenito e folhelho dobrados. O objetivo é comparar os resultados obtidos pelo método de Simulação Baseada em Wavelets - método o qual utiliza a estatística espacial de alta-ordem para reproduzir as estruturas da geologia - com o método clássico de Simulação Sequencial Gaussiana, a fim de avaliar um método de geoestatística de multiponto aplicado a variável contínua. Para comparar os resultados, foi calculado o valor potencial e para qual pilha (minério ou estéril) deveria ir cada bloco. Os resultados mostram que, matematicamente, a Simulação Sequencial Gaussiana obteve resultados melhores, uma vez que destinou melhor seus blocos e perdeu menos dinheiro com estéril na pilha de minério e minério de pilha de estéril. Porém, é notória a influência da imagem de treinamento nos resultados da Simulação Baseada em Wavelets, o que mostra que a Simulação Baseada em Wavelets de variáveis contínuas é promissora se a imagem de treinamento for adequada. O grande problema é que sua escolha ou criação é demasiadamente complexa, pois necessita de precisão local e global.