Métodos heurísticos de desagregação de dados de demanda por transportes através de simulação geoestatística

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lindner, Anabele
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18144/tde-05042019-133552/
Resumo: Informações desagregadas de demanda por transportes são recursos essenciais ao correto planejamento urbano, especialmente no que se refere ao transporte público. Contudo, o acesso a estes dados é limitado, devido ao alto custo para coleta de pesquisas domiciliares e à confidencialidade de informações individuais. A presente tese de doutorado aborda esta problemática ao propor dois métodos heurísticos de desagregação de dados, através de simulação geoestatística. Propõe-se empregar, como um input aos procedimentos, informações com alta disponibilidade, como, por exemplo, os microdados, coletados pelo censo demográfico. A diferença principal entre os métodos é que o primeiro não necessita de valores de dados provenientes de Pesquisa Origem/Destino do município de São Paulo, área de estudo deste trabalho. Ambas as abordagens, que podem ser aplicadas a outros diferentes estudos de caso, compreendem um procedimento alternativo para deconvolução de semivariogramas, Simulação Sequencial Gaussiana e validação, considerando malhas regulares de diferentes suportes. Os mapas e métricas estatísticas gerados comprovam que é possível desagregar dados, associados a Áreas de Ponderação de Setores Censitários (Método Proposto 1 – MP1) e a Zonas de Tráfego (Método Proposto 2 – MP2), através dos procedimentos aplicados. Além disso, este trabalho apresenta contribuições metodológicas ao viabilizar: a geração de diversos cenários que reproduzam o comportamento espacial da variável; e o estudo da incerteza associada às simulações.