Fórmulas explícitas em teoria analítica de números

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Castro, Danilo Elias
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24092019-170124/
Resumo: Em Teoria Analítica de Números, a expressão \"Fórmula Explícita\" se refere a uma igualdade entre, por um lado, uma soma de alguma função aritmética feita sobre todos os primos e, por outro lado, uma soma envol- vendo os zeros não triviais da função zeta de Riemann. Essa igualdade não é habitual em Teoria Analítica de Números, que trata principalmente de aproximações assintóticas de funções aritméticas e não de fórmulas exatas. A expressão se originou do trabalho seminal de Riemann, de 1859, onde aparece uma expressão exata para a função (x), que conta o número de primos que não excedem x. A prova do Teorema dos Números Primos, de Hadamard, também se baseia numa fórmula explícita de (x) (função de Tschebycheff). Mais recentemente, o trabalho de André Weil reforçou o inte- resse em compreender-se melhor a natureza de tais fórmulas. Neste trabalho, apresentaremos a fórmula explícita de Riemann-von Mangoldt, a de Delsarte e um caso particular da fórmula explícita de Weil.