Seleção de conteúdo referencial com base em traços de personalidade

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Monteiro, Danielle Sampaio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-16102018-113303/
Resumo: O presente trabalho traz um estudo no âmbito de Geração de Língua Natural, com ênfase na tarefa de Geração de Expressões de Referência (GER), a qual consiste em gerar expressões referenciais semelhantes às produzidas por humanos. Existem estudos que exploram o uso da variação individual do ser humano no aprendizado do padrão de seleção de conteúdo na construção de descrições, contudo, treinar tais conjuntos de dados é computacionalmente caro. O trabalho apresenta um modelo de seleção de conteúdo para GER, baseado em traços de personalidade, o qual generaliza padrões de comportamentos referenciais similares em cada perfil de personalidade. Na pesquisa também realizou-se um levantamento bibliográfico sobre o tema, e construiu-se um córpus com expressões de referência contendo informações de personalidade de cada participante, as quais foram anotadas tomando por base o modelo dos Cinco Grandes Fatores. Este córpus tem como finalidade ser utilizado como entrada tanto no modelo desenvolvido, como em outros estudos na área. Os resultados comprovam que modelos de GER dependentes da personalidade superam os algoritmos GER tradicionais, e que são uma alternativa viável em abordagens que dependam da variação de locutores