Atratores para equações de ondas não autônomas com condição de fronteira da acústica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Souza, Thales Maier de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03022017-150115/
Resumo: Esta tese é dedicada ao estudo de uma classe de equações de ondas com condições de fronteira da acústica. Investigamos a dinâmica assintótica de tais equações no caso em que o sistema está sujeito à ação de uma força externa não autônoma. Nessa situação, adicionando uma dissipação fraca, provamos que o problema gera um processo de evolução dissipativo. O nosso objetivo é então o estudo da existência de atratores não autônomos. Num primeiro momento estabelecemos a existência de um atrator do tipo \\pullback\", minimal, dentro de um universo de conjuntos temperados. Também estudamos a semicontinuidade superior dos atratores quando a perturbação não autônoma tende para zero. Nosso resultado permite considerar forcas externas não limitadas e perturbações não lineares com crescimento crítico (de Sobolev). Num segundo momento, fazemos um estudo sobre a existência de atratores uniformes. Em vista de resultados recentes de Zelik (2015), consideramos forcas externas mais gerais do que a dita classe das forcas compactas por translação (translation-compact). Parte desta tese foi aceita para publicação na revista \\Differential and Integral Equations\" sob o ttulo \\Pullback dynamics of non-autonomous wave equations with acoustic boundary condition\".