Extração de conhecimento de redes neurais artificiais.

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Martineli, Edmar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CN2
EN
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19102001-100256/
Resumo: Este trabalho descreve experimentos realizados com Redes Neurais Artificiais e algoritmos de aprendizado simbólico. Também são investigados dois algoritmos de extração de conhecimento de Redes Neurais Artificiais. Esses experimentos são realizados com três bases de dados com o objetivo de comparar os desempenhos obtidos. As bases de dados utilizadas neste trabalho são: dados de falência de bancos brasileiros, dados do jogo da velha e dados de análise de crédito. São aplicadas sobre os dados três técnicas para melhoria de seus desempenhos. Essas técnicas são: partição pela menor classe, acréscimo de ruído nos exemplos da menor classe e seleção de atributos mais relevantes. Além da análise do desempenho obtido, também é feita uma análise da dificuldade de compreensão do conhecimento extraído por cada método em cada uma das bases de dados.