Aprendizado automático de decomposições para a previsão da estrutura a termo de taxas de juros com redes neurais

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Kauffmann, Piero Conti
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-05092022-160733/
Resumo: Este trabalho propõe um modelo para a previsão da estrutura a termo das taxas de juros que faz aprendizado automático de novas decomposições de curvas de taxas de juros a partir de um modelo linear Gaussiano de espaço de estados acoplado a uma rede neural geradora de decomposições. Para controlar a complexidade do modelo e garantir que as decomposições estimadas preservem propriedades desejáveis, como suavidade e ortogonalidade dos fatores latentes, uma distribuição Priori com efeito de regularização destas propriedades é definida para os parâmetros do modelo, e em seguida, é descrito um procedimento computacionalmente eficiente de estimação para todos os parâmetros do modelo em uma etapa. Uma avaliação empírica com 14 anos de dados históricos da curva de taxa de juros brasileira mostrou que a técnica proposta é capaz de obter melhores previsões fora-de-amostra que modelos tradicionais da literatura, como o modelo Nelson e Siegel dinâmico e variações.