Modelagem de peso e consumo de sólidos totais em bezerros leiteiros e o uso dos resíduos de confundimento mínimo no diagnóstico de modelos lineares mistos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Oliveira, Allison Queiroz de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042022-104534/
Resumo: O uso de modelos mistos na análise de respostas influenciadas por fatores de tratamento e por fatores longitudinais, apresenta muitas vantagens quando comparado aos modelos clássicos de regressão. A complexidade desses modelos aumenta quando se modela simultaneamente duas ou mais variáveis respostas correlacionadas, num cenário com forte desbalanceamento no número de observações. No diagnóstico dos modelos mistos ajustados sugere-se o uso dos resíduos de confundimento mínimo em substituição aos resíduos clássicos dos modelos de regressão. No presente trabalho foram utilizados os dados oriundos de um experimento desenvolvido na Escola Superior de Agricultura “Luiz de Queiroz”, que avaliou o desempenho de bezerros da raça holandesa, submetidos a três dietas sólidas ao longo de oito semanas. Objetivou-se o ajuste de modelos lineares mistos sob as abordagens univariada e bivariada para explicar o comportamento das variáveis respostas peso e consumo médio de sólidos totais ao longo do tempo, utilizando os resíduos de confundimento mínimo no diagnóstico dos modelos selecionados. Nos ajustes foram utilizadas diversas bibliotecas do programa computacional R e na seleção dos modelos foram utilizados testes da razão de verossimilhanças para modelos encaixados e o Critério de Informação Bayesiano (BIC) para os modelos não encaixados. A abordagem bivariada foi mais adequada e informativa do que a univariada, porque considera a correlação entre o peso e o consumo medidos nas mesmas unidades experimentais e nos diferentes instantes do tempo. Comprovou-se a eficácia do uso dos resíduos de confundimento mínimo no diagnóstico dos modelos lineares mistos em comparação aos resíduos marginais e condicionais estudentizados, visto que os primeiros apresentam um menor viés quando comparado aos dois últimos.