Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Santos, Felipe Rodolpho Sanches dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-03112020-120351/
|
Resumo: |
Nesse trabalho, estudamos os resultados obtidos por Asperti et al. [1] e Hasanis et al. [17] envolvendo a curvatura de Gauss-Kronecker de hipersuperfícies mínimas em espaços forma quadridimensionais. Apresentamos conceitos relativos ao estudo de variedades Riemannianas, assim como a técnica do referencial ortonormal móvel utilizada pelos dois artigos. Entre os resultados de [1], destaca-se para os casos Euclideano e hiperbólico uma versão local do resultado obtido por Cheng [4]. No caso esférico, obtemos uma isometria entre a imagem de uma imersão mínima de uma hipersuperfície completa com curvatura de Gauss-Kronecker constante não nula e o toro de Clifford. Apresentamos também dois teoremas referentes à classificação de hipersuperfícies mínimas completas em espaços forma quadridimensionais além de desenvolver os resultados presentes em [17]. |