Sobre estabilidade de hipersuperfícies com curvatura escalar nula.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Farias Filho, Francisco Silvio Bernardo de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/34725
Resumo: We will prove that there are no complete and stable hypersurface of R4 with zero scalar curvature, polynomial volume growth and such that -K H3 ≥ c> 0 at any point, for some constant c> 0, where K denotes the curvature of Gauss-Kronecker and H denotes the mean curvature of the immersion x: M3 → R4, where Mn is Riemannian variety. Our second result is a Bernstein type, which guarantees that there are no complete graphs of R4 with zero scalar curvature and such that -K H3 ≥ c> 0 at every point. Finally, it will be shown that if there is a stable hypersurface with zero scalar curvature and -K H3 ≥ c> 0 at all points, that is, with volume growth higher than the polynomial, then its tubular neighborhood is not plunged by soft rays.