Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Silva, Diego Alves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55136/tde-31072018-163928/
|
Resumo: |
O principal objetivo deste trabalho é apresentar técnicas de solução para equações não lineares. Especificamente, consideramos equações compostas por funções elementares, dentre elas polinomiais, racionais, trigonométricas, exponenciais e logarítmicas, e por operações algébricas de soma, subtração, multiplicação, divisão, potência e raiz. Exploramos técnicas de resolução analítica e numérica. Como não existem fórmulas resolventes de extensão geral, a técnica analítica consiste em aplicar operações elementares que nos levam a equações equivalentes (que têm a mesma solução) até que se consiga uma equação simples, de fácil resolução. Os métodos numéricos abrangem um conjunto maior de equações e obtêm uma aproximação para a solução por meio de um processo que gera uma sequência de aproximações. Entre os métodos numéricos estudados estão Bissecção, de Newton, das Secantes e do Ponto Fixo (ou Iteração Linear). Recursos Computacionais como calculadora, planilha eletrônica e o software Maxima foram utilizados com objetivo de automatizar os cálculos, tornando essa tarefa mais rápida, e também buscando extrair informações adicionais do processo de resolução como criar tabelas e traçar gráficos. Realizamos testes numéricos com equações de diversos graus de dificuldade. Observamos as vantagens, as desvantagens e as limitações de cada método e de cada recurso. |