Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Mascarin, Isis Fernanda |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23032020-094029/
|
Resumo: |
A análise de dados de contagem ocupa um importante lugar dentro da estatística aplicada, uma vez que muitos problemas reais são expressos em termos de enumerações. Frequentemente, conjuntos de dados de contagem apresentam discrepâncias na frequência da observação zero, que pode ser alta ou baixa, e assim refere-se ao conjunto de dados como zero-inflacionado ou zero-deflacionado, respectivamente. Além disso, existem situações onde a observação zero não ocorre nos conjuntos de dados e, muitas vezes, modelos zero-truncados são inadequadamente considerados, visto que há uma probabilidade positiva (e não nula) para ocorrência de tal evento, embora este não tenha ocorrido. Esta dissertação tem como objetivo principal apresentar o procedimento de estimação dos parâmetros das distribuições zero-modificadas em situações em que a frequência da observação zero nos conjuntos de dados é nula e a probabilidade de ocorrência de tal valor é positiva (zero-deflacionada). A metodologia proposta considera a estimação de zeros faltantes no conjunto de dados formado apenas pelas observações positivas, tal que o conjunto de dados aumentados (adicionando-se os zeros estimados) pode ser explicado por uma distribuição tradicional. Métodos dos momentos e da máxima verossimilhança são considerados para o procedimento de estimação por meio do algoritmo de estimação-maximização. Estudos de simulação e com dados artificiais são utilizados para avaliação das propriedades dos estimadores e estimativas obtidas. Conjuntos de dados reais que apresentam diferentes casos de zeromodificação também são analisados. |