Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Biguetti, Claudia Cristina |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/25/25149/tde-02102018-153955/
|
Resumo: |
Despite the successful clinical application of titanium (Ti) as a biomaterial, the exact cellular and molecular mechanisms responsible for Ti osseointegration remain unclear. Indeed, specific knowledge still lacks on what elements are present at biomaterial/host interface and how these factors can trigger inflammatory pathways involved in the subsequent osseointegration process. In this context, we hypothesize that the surgical trauma inherent to the biomaterial grafting results in the release of DAMPs (damage-associated molecular patterns), endogenous proteins that act as triggers of immune inflammatory response upon cellular/tissue stress and/or damage. HMGB1 comprises the prototypic DAMP, which triggers host response via its cognate receptor RAGE, present at leucocytes and somatic cells surfaces. In this context, the aim of this thesis is to study the influence of DAMPs on the biomaterial/host interface and its role in mediating a constructive inflammatory process along tissue repair and osseointegration outcome. Methods and Results: In the article 1, we first characterized an oral osseointegration model in C57Bl/6 mice. This model of oral osseointegration was performed by using Ti screws (6AL-4V, Ø0.6mm, length of 1.5 mm) implanted in the edentulous alveolar crest of mice maxilla. The peri-implant sites were evaluated by microCT, as well histological and molecular assessments. In the article 2, we confirm the presence of DAMPs (HMGB1, HSP60, HSP70, S100A, Byglican, and Fibronectin) at Ti/host interface, analyzing Ti discs (6AL-4V, Ø6mm, 2mm of thick) implanted in the subcutaneous tissue of C57Bl/6 mice. Subsequently, the impact of HMGB1 and RAGE on the tissue repair around Ti discs was investigated by using HMGB1 (GZA 200mg/Kg) or RAGE (RAP, 4m/Kg/day) pharmacological inhibitors. The HMGB1/RAGE axis actively influences the inflammatory response post biomaterial implantation and the blocking of both molecules can negatively affect the subcutaneous tissue repair surrounding Ti disc in mice. In the article 3, Ti screws were implanted in the maxillary edentulous alveolar crest of C57Bl/6 mice, treated or untreated with GZA and RAP and the osseointegration process was evaluated by microscopic and molecular analysis (such as characterized in the article 1). The failure of osseointegration process was observed in mice treated with RAP or GZA, which present a disruption of the inflammatory process followed by foreign body reaction. In conclusion, HMGB1 and RAGE actively influence the tissue repair and osseointegration process in response to Ti-devices grafting, influencing the genesis and regulation of inflammatory immune response, which include the modulation of macrophages polarization state, MSC migration and differentiation in bone cells and consequent bone deposition. |