Redes neurais para grafos e suas aplicações aos sistemas complexos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Carvalho, Guilherme Michel Lima de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-07062022-132235/
Resumo: Sistemas complexos são compostos de diversos componentes que interagem entre si. Uma abordagem natural para estes tipos de sistemas é utilizando a abstração matemática de grafos. Em diversos contextos do mundo real é possível se utilizar técnicas de redes complexas para a modelagem desses sistemas. Nestes sistemas podem ocorrer processos dinâmicos como por exemplo a propagação de informação e a propagação de doenças. Neste trabalho consideramos a utilização de técnicas de redes neurais artificiais para dados estruturados como grafos com o objetivo de estudar a propagação de rumor em redes complexas e a detecção de estruturas de comunidades. Para o caso de propagação de rumor, foi proposto um modelo baseado em redes neurais para grafos com o objetivo de recuperar a origem de propagação em grafos artificiais com estruturas de comunidades e para a detecção de estruturas de comunidades foi avaliado o potencial do aprendizado de representações por redes neurais para grafos em comparação a algoritmos tradicionais da ciência de redes complexas.