Redes neurais para grafos e suas aplicações aos sistemas complexos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Carvalho, Guilherme Michel Lima de
Orientador(a): Rodrigues, Francisco Aparecido lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/16236
Resumo: Complex systems are composed of several components that interact with each other. A natural approach for these types of systems is to use mathematical graph abstraction. In different contexts in the real world, it is possible to use complex network techniques to model these systems. In these systems, dynamic processes such as the spread of information and the spread of disease can occur. In this work we consider the use of artificial neural network techniques for graph-structured data in order to study the propagation of rumor in complex networks and the detection of community structures. For the proposed case of rumor, a model was developed based on graph neural networks for the porpuse of detected the source of the a rumour in graphs with community structure and for community dectection was evaluate the potential of graph neural networks in comparison to traditional methods of the network science.