Bootstrap não-paramétrico aplicado a dados incompletos

Detalhes bibliográficos
Ano de defesa: 1998
Autor(a) principal: Salinas, Delhi Teresa Paiva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020959/
Resumo: Um problema bastante comum em levantamentos amostrais é afalta de algumas das informações. Uma maneira de tratar esse problema é a imputação, consiste em prever as observações perdidas, completando o conjunto, de dados para depois analisá-lo como se fosse completo. Em particular, essa idéia também pode ser aplicada quando se pretende utilizar o método bootstrap para se estimar o erro padrão de algum estimador. Apesar dessa técnica ser bastante utilizada atualmente, pouca atenção tem sido dada á sua aplicação na ausência de informações. Este trabalho discorre sobre a aplicação da técnica bootstrap não-paramétrica a dados incompletos, caso em que o procedimento usual é aplicá-la em conjunto com algum método de imputação. Apresentamos os resultados de simulação sobre a estimação da variância dos estimadores das componentes da variância em um modelo linear misto e mediante a geração de dados através de uma distribuição normal bivariada. As amostras utilizadas são do tipo painel onde n indivíduos foram gerados em dois instantes de tempo