Bootstrap estacionario em modelos ARFIMA (p,d,q)

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silma de Souza Evangelista
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ICED-9CSH3N
Resumo: This study aims to use the stationary bootstrap to make inference about the memory parameter, d, in ARFIMA models and verify its efficiency in the region of stationarity. The method consists of using the stationary bootstrap to resample a data set using the geometric and uniform distributions. The length of each block that composes the bootstrap series is obtained through the geometric distribution and the starting point of each block is generated by a uniform distribution. In this work, the estimation of the memory parameter of ARFIMA models is performed through semiparametric and maximum likelihood methods. Bootstrap percentile and bias corrected confidence intervals are also constructed and their performances are analyzed by the coverage rate of the intervals. Monte Carlo simulation studies showed that lower values of the parameter used in the geometric distribution generate estimates of d closer to the actual value, especially when using the semiparametric procedure. Moreover, the results also show that the percentile confidence intervals have coverage rates closer to the fixed nominal value of 95% than the interval BC.