Identidades polinomiais em algebras de bernstein

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Sierra, Ivam Alejandro Correa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-004911/
Resumo: Neste trabalho estudamos as algebras de bernstein que satisfazem uma identidade polinomial. No primeiro capitulo, damos uma caracterizacao de alguns tipos de algebras de bernstein e estudamos algebras de bernstein que satisfazem uma identidade de grau quatro que nao e consequencia da comutatividade. Finalmente damos uma caracterizacao das algebras de bernstein de ordem n que sao algebras de jordan. No segundo capitulo, construimos as identidades minimais para as algebras de bernstein nos casos normal, excepcional, nuclear e arbitrario. Usamos a tecnica de processar identidades via representacoes do grupo simetrico. Finalmente, no terceiro capitulo, estudamos as algebras comutativas que satisfazem uma das identidades de grau seis que foram obtidas no capitulo dois