Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Lebensztayn, Élcio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-24052013-125727/
|
Resumo: |
Estudamos o modelo dos sapos na árvore homogênea, um sistema de partículas a tempo discreto cuja dinâmica é sintetizada a seguir. No instante inicial, existe em cada vértice da árvore um número aleatório independente e identicamente distribuído de partículas; aquelas posicionadas em um vértice fixado estão ativas, as demais inativas. Partículas ativas realizam passeios aleatórios simples, independentes, a tempo discreto, com probabilidade de desaparecimento (1 - p) em cada instante. Uma partícula inativa torna-se ativa assim que seu vértice é visitado por uma partícula ativa. Consideramos nesta tese o valor crítico p_c que separa a fase em que o processo se extingue quase certamente da fase em que existem partículas ativas em todos os instantes com probabilidade positiva. Provamos um limitante superior para a probabilidade crítica p_c, o qual melhora o resultado anteriormente conhecido para o caso de configuração inicial de uma partícula por vértice. O argumento utilizado consiste na descrição do modelo dos sapos como um modelo de percolação orientada que domina processos de ramificação convenientemente definidos. Obtemos também o valor assintótico do limitante superior estabelecido, mostrando ser igual ao valor assintótico da probabilidade crítica. |