Precificação de ativos via Machine Learning: uma extensão de métodos lineares esparsos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Nascimento, Caio de Angelis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/96/96131/tde-08052020-162550/
Resumo: Neste trabalho utilizamos uma classe de modelos de não arbitragem e métodos de estimação baseados em ferramentas de Machine Learning para prever o prêmio de risco ao longo do tempo. A pesquisa inova em adicionar modelos de alta dimensão esparsos para precificação de ativos, como modelos de vetores autoregressivos esparsos, análise de componentes principais esparsos (SPCA), combinação de métodos de penalização como pré-seleção de variáveis e e outros modelos econométricos baseados em esparsidade. Também consideramos como extensão aos modelos existentes na literatura de alta de dimensão analisados na pesquisa correções nos estimadores de matrizes de covariância, adicionando estimadores considerando dependência de longo prazo. A base de dados utilizada consiste de 630 séries temporais relacionadas ao mercado Brasileiro, contendo variáveis macroeconômicas, setoriais e especificas dos ativos, divididas em quatro diferentes espaços de tempo (dia, mês, trimestre e ano). Como resultado principal foi desenvolvida uma estrutura a termo do prêmio de risco de um conjunto de ativos selecionados, chegando a encontrar um R2 para previsões de fora da amostra de aproximadamente 91% para o Índice IBOVESPA. Com objetivo de testar a capacidade de geração de alpha dos modelos desenvolvidos na pesquisa, foram desenvolvidas estratégias de Long-Short e Long-Only compostas pelos ativos analisados de 1 de janeiro de 2016 até 31 de dezembro de 2017, apresentando índice de Sharpe de 3,030 e um retorno acumulado de 157,07% no período.