Prêmios realizados e esperados no Brasil

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: França, Michael Tulio Ramos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19012016-151431/
Resumo: Dado que o investimento no mercado acionário envolve incerteza, devíamos esperar que seu retorno médio fosse relativamente superior a uma aplicação livre de risco para compensar o investidor pelo risco adicional que ele incorre quando aplica seus recursos em ações. Entretanto, não encontramos tal evidência quando analisamos o comportamento do mercado acionário brasileiro. Isto porque, considerando os retornos realizados médio dos últimos vinte anos, o prêmio histórico foi relativamente baixo. Assim, naturalmente surge à questão se tal estimativa corresponde a um valor razoável para inferirmos o futuro comportamento do mercado acionário. Para responder a esta questão, nossa metodologia constituiu em três etapas. Na primeira, revisamos a literatura em busca de técnicas de estimação do prêmio e selecionamos as abordagens baseado em artigos recentes, citações e disponibilidade de dados. Além disso, também realizamos algumas propostas de estimação. Em seguida, apresentamos os resultados das metodologias selecionadas para os anos recentes e observamos que as estimativas apresentaram certo grau de heterogeneidade. Na segunda etapa, testamos o desempenho dos modelos empíricos estimados usando testes de previsão fora da amostra. Os resultados apontaram que alguns modelos foram superiores ao prêmio histórico. Desta forma, encontramos evidências de que o prêmio histórico representa apenas mais uma fonte de informação para inferir o prêmio esperado e, se tomado sozinho, não constitui um procedimento de inferência razoável. Visto que cada modelo apresenta uma estratégia empírica para inferir o prêmio, todos deveriam representar uma fonte informacional sobre o prêmio futuro. Consequentemente, uma corrente da literatura recente destaca que a estratégia ótima pode ser agregar informações dos modelos individuais. Com este intuito, o último passo da metodologia foi combinar informações dos modelos que apresentaram melhor desempenho em relação ao prêmio histórico e verificar se tal procedimento aumentou a performance do poder preditivo dos modelos. Como resultado, verificamos que tal abordagem melhora e estabiliza a previsão do prêmio.