Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Gaspar, Michel Fernandes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27062018-130056/
|
Resumo: |
O estudo das propriedades de regularidade na reta real é tão antigo quanto o surgimento da teoria dos conjuntos no final do século XIX. Essas propriedades indicam bom comportamento para subconjuntos da reta real, sendo os exemplos mais proeminentes a propriedade do conjunto perfeito, a Lebesgue mensurabilidade e a Baire mensurabilidade. Neste trabalho outras propriedades de regularidade são exploradas, como a propriedade de Ramsey, a propriedade doughnut, a Marczewski mensurabilidade, a Miller mensurabilidade, a Laver mensurabilidade, dentre outras. A relação que existe entre propriedades de regularidade e forcing é conhecida desde a década de 70 com os trabalhos de Robert Solovay, que, por exemplo, construiu um modelo de teoria dos conjuntos onde todo subconjunto da reta real é Lebesgue mensurável, Baire mensurável e tem a propriedade do conjunto perfeito. Todas essas propriedades de regularidade são capturadas em uma definição geral recorrendo à poderosa técnica do \\textit{forcing idealizado}, introduzida e explorada por Jindrich Zapletal em 2004. O principal estudo sistemático das propriedades de regularidade via forcing idealizado foi feito por Yurii Khomskii em 2012 em sua tese de doutorado. O resultado de Solovay mencionado acima é provado nesse contexto geral de regularidade. Também são exploradas caracterizações para a regularidade dos conjuntos no segundo nível da hierarquia projetiva via forcing sobre L. Para a maioria dos assuntos abordados é dada alguma nota histórica. |