Topologias de grupo enumeravelmente compactas: MA, forcing e ultrafiltros seletivos

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Quiroga, Jury Fabiana Castiblanco
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092012-163026/
Resumo: É bem conhecido o fato de que todo grupo compacto tem sequências não triviais convergentes. A existência de grupos enumeravelmente compactos sem sequências não triviais convergentes, foi provada usando axiomas adicionais à axiomática usual ZFC: A. Hajnal e I. Juhász sob CH, E. K. van Douwen sob MA, A. H. Tomita sob MA(sigma-centrada) e R.E. Madariaga-Garcia e A. H. Tomita usando ultrafiltros seletivos. Neste trabalho, estudaremos algumas construções recentes relacionadas com as citadas acima, usando o Axioma de Martin, ultrafiltros seletivos e forcing. Essas construções estão relacionadas com algumas questões indicadas por A.D. Wallace, E. van Douwen, M. Tkachenko, D. Dikranjan e D. Shakhmatov