Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Alves, Oswaldo Scarpa Magalhães |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-124445/
|
Resumo: |
Neste trabalho estudamos o comportamento assintótico (forma assintótica e transição de fase) de um sistema crescente de passeios aleatórios simples, cuja dinâmica pode ser descrita do seguinte modo: inicialmente temos um número aleatório de partículas em cada sítio de um grafo G. Um sítio arbitrário de G é destacado dos demais e denominado, a partir de então, sua raíz e denotado pelo símbolo 0. Todas as partículas estão ativas (acordadas). A cada novo instante de tempo, cada uma das partículas ativas morre com probabilidade 1-p, independentemente das demais. Uma vez que uma partícula ativa sobrevive, ela salta sobre um sítio vizinho mais próximo, que é escolhido com probabilidade uniforme. Assim, cada partícula ativa realiza um passeio aleatório simples a tempo discreto em G, enquanto estiver viva. Durante o seu percurso, uma partícula ativa acorda todas as partículas dormentes que encontra pelo caminho e estas começam a se mover. Não há interação entre partículas ativas |