Chaos and Turing machines on bidimensional models at zero temperature

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Nosaki, Gregorio Luis Dalle Vedove
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-04012021-102503/
Resumo: In equilibrium statistical mechanics or thermodynamics formalism one of the main objectives is to describe the behavior of families of equilibrium measures for a potential parametrized by the inverse temperature beta. Here we consider equilibrium measures as the shift invariant measures that maximizes the pressure. Other constructions already prove the chaotic behavior of these measures when the system freezes. One of the most important examples was given by Chazottes and Hochman where they prove the non-convergence of the equilibrium measures for a locally constant potential when the dimension is bigger than or equal to 3. In this work we present a construction of a bidimensional example described by a finite alphabet and a locally constant potential in which there exists a subsequence where the non-convergence occurs for any sequence of equilibrium measures at inverse temperatures beta. In order to describe such an example, we use the construction described by Aubrun and Sablik which improves the result of Hochman used in the construction of Chazottes and Hochman.