Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Eduardo, Gabriel de Paula |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18149/tde-17012011-145140/
|
Resumo: |
Apresenta uma solução inovadora de controle por redes neurais artificiais aprendendo segundo a técnica de aprendizagem por reforço usando algoritmos genéticos para integrar múltiplos sistemas ativos no controle de estabilidade de um veículo. Estudo, restringido a um domínio de manobras, foi desenvolvido excluindo falhas e alterações da planta no tempo. Contribui para responder como o controlador de dinâmica veicular pode ser aperfeiçoado para atuação simultânea de múltiplos sistemas ativos. Contempla o desenvolvimento do neurocontrolador e algoritmo de aprendizagem na plataforma Matlab, de um modelo de dinâmica veicular em ambiente ADAMS e do modelo de referência, atuadores e observador com programação Matlab. Analisa a estabilidade da planta e define regiões de atuação do controlador. Apresenta um estudo e definição da técnica de controle de estabilidade em guinada para nortear a função de otimização, o treinamento e as simulações. Treinamento da rede neural para acomodar as não linearidades envolvidas na planta e para otimizar a integração dos múltiplos sistemas ativos focando nas especificações de desempenho do controlador e no domínio de situações a serem analisadas. Simulação de situações e manobras para validação e avaliação do desempenho do controlador com co-simulação entre Matlab e ADAMS. Resultados qualitativos e quantitativos do desempenho do controlador justificando a integração efetiva dos sistemas e o neurocontrolador não-linear. |