Os tipos estáveis e multiplicidades de germes quase homogêneos de Cn em Cn

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Miranda, Aldicio José
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02022005-153135/
Resumo: A determinação dos invariantes numéricos associados a germes de aplicações diferenciáveis é uma ferramenta muito útil no estudo de problemas de equisingularidade em famílias. Em geral, estes invariantes são obtidos algebricamente através de esquemas r-dimensionais, que surgem nos tipos estáveis de uma perturbação estável do germe. Neste trabalho é feito um estudo sobre estes invariantes nos tipos estáveis de germes de aplicações holomorfas f : (Cn,0) em (Cn,0) finitamente determinados de coposto 1. Inicialmente é feita uma caracterização completa de todos os tipos estáveis, bem como de sua geometria. Como aplicações são estudados os invariantes no discriminante de germes quase homogêneos. São descritas fórmulas para os invariantes 0-stáveis de germes de (Cn,0) em (Cn,0). Estes resultados são aplicados para o cálculo das multiplicidades polares do discriminante de germes quase homogêneos de (C3,0) em (C3,0).