Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Reis, Thiago |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/85/85133/tde-07012014-134548/
|
Resumo: |
Nos últimos anos a Web obteve um crescimento exponencial, se tornando o maior repositório de informações já criado pelo homem e representando uma fonte nova e relevante de informações potencialmente úteis para diversas áreas, inclusive a área nuclear. Entretanto, devido as suas características e, principalmente, devido ao seu grande volume de dados, emerge um problema desafiador relacionado à utilização das suas informações: a busca e recuperação informações relevantes e úteis. Este problema é tratado por algoritmos de busca e recuperação de informação que trabalham na Web, denominados rastreadores web. Neste trabalho é apresentada a pesquisa e desenvolvimento de um algoritmo rastreador que efetua buscas e recupera páginas na Web com conteúdo textual relacionado ao domínio nuclear e seus temas, de forma autônoma e massiva. Este algoritmo foi projetado sob o modelo de um sistema especialista, possuindo, desta forma, uma base de conhecimento que contem tópicos nucleares e palavras-chave que os definem e um mecanismo de inferência constituído por uma rede neural artificial perceptron multicamadas que efetua a estimação da relevância das páginas na Web para um determinado tópico nuclear, no decorrer do processo de busca, utilizando a base de conhecimento. Deste modo, o algoritmo é capaz de, autonomamente, buscar páginas na Web seguindo os hiperlinks que as interconectam e recuperar aquelas que são mais relevantes para o tópico nuclear selecionado, emulando a habilidade que um especialista nuclear tem de navegar na Web e verificar informações nucleares. Resultados experimentais preliminares apresentam uma precisão de recuperação de 80% para o tópico área nuclear em geral e 72% para o tópico de energia nuclear, indicando que o algoritmo proposto é efetivo e eficiente na busca e recuperação de informações relevantes para o domínio nuclear. |