Um sistema de Gentzen para Cálculos com Identidade Parcial e Universos Abertos

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Mazak, Rene Pierre Maximilian Eduard
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/8/8133/tde-21072010-112112/
Resumo: Os sistemas Q1 e Q2, desenvolvidos por Andréa Lopari?, perfazem três principais modificações na semântica clássica: primeiramente, o universo do discurso pode não estar limitado aos objetos que pertencem ao domínio de uma dada estrutura; em segundo lugar, a relação de identidade é determinada como a diagonal desse domínio (assim, tal relação pode não ser aplicável a todas as coisas sobre as quais a linguagem possa falar); em terceiro lugar, o quantificador existencial, em Q1, bem como o universal, em Q2, podem alcançar valores que estejam fora do domínio da estrutura. Como consequência, embora definida classicamente, a negação apresenta alguns comportamentos não clássicos - a negação de um predicado numa fórmula atômica, por exemplo, pode caracterizar algo maior que, e não tão bem definido quanto, o complemento da extensão desse predicado relativamente ao domínio. [...].