Variedades Inerciais Aproximadas e métodos de Galerkin não linear para as equações de água rasa

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Sotil, José Walter Cárdenas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-022952/
Resumo: Nesta tese estudamos as Variedades Inerciais Aproximadas para um modelo derivado das equações de água rasa no chamado plano-f, considerando a inclusão de termos viscosos, uma forçante na vertical e condições de contorno periódicas. Demonstramos que as soluções do sistema associado às variedades inerciais aproximadas covergem para as soluções do sistema original, bem como estabelecemos estimativas de erro. Sob o ponto de vista numérico estudamos aproximações por métodos tipo Galerkin, propondo um método de Galerkin não linear para as equações de água rasa e comparando-o com o método de Galerkin linear quanto à eficiência computacional, estabilidade e precisão. O esquema proposto faz uso de um método pseudo-espectral com discretização temporal de segunda ordem, com três níveis no tempo. Estabelecemos ainda a estabilidade dos métodos sob dois tipos de linearização do campo das velocidades