Adaptive passivity control for haptic transparency enhancement of multilateral robotic telerehabilitation in virtual reality environments

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Consoni, Leonardo José
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18149/tde-01062020-111015/
Resumo: Over the last decades, the worldwide increase in cases of neuromotor health issues motivated a growing research interest in improving rehabilitation processes using robots. The performed studies opened the possibility to include auxiliary technologies in physical and occupational therapy, like virtual reality and remote interaction between patients and therapists. The so called telerehabilitation, in particular, offers potential extension of ever shortening periods of clinical treatment via home care. Combination of that technology with computational games allow patients to feel more motivated by exercising with friends, relatives, or even other patients. Although there are veried and potential benefits from application of those techniques, there are related challenges: instabilities due to lag in distant interaction, variation of users\' bodily characteristics and discrepancy between the skill level of participants in a joint activity. There are also still few attempts towards tooling and methodology standardization, which could lead to faster developments in the field.This work develops a computational platform for studies of Robotic Telerehabilitation with Serious Games, while proposing on the basis of the available literature a new unified approach to deal with the main open issues identified. The tested hypothesis states that the same set of variables can parameterize the optimization of 3 interconnected subsystems: automatic assistance for single patients, difficulty balancing in multi-user activities, and stability and transparency control in bi- or multilateral remote operation. Therefore, by constantly recalculating the patient\'s mechanical parameters, it is speculated that the system can dynamically adapt on those 3 levels of operation, improving its performance. A previous literature review narrows down the requirements, available solutions and difficulties still present for the implementation of such system, in particular for the most critical aspect of teleoperation. Performed simulations and experimental tests are described and executed, comparing more established approaches to new proposed strategies. In the end, obtained results reveal a partial success in enabling better motor interaction between users, indicating a way forward, and considerations about necessary further investigations and future work are made.