Detalhes bibliográficos
| Ano de defesa: |
2015 |
| Autor(a) principal: |
Lambert, Rodrigo |
| Orientador(a): |
Não Informado pela instituição |
| Banca de defesa: |
Não Informado pela instituição |
| Tipo de documento: |
Tese
|
| Tipo de acesso: |
Acesso aberto |
| Idioma: |
por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: |
|
| Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-16072015-154752/
|
Resumo: |
Definimos a função caminho mais curto como sendo a mínima quantidade de passos para que uma realização do processo com condição inicial y atinja um conjunto-alvo x. Para tal função, provamos três resultados principais: um teorema de concentração de massa, um princípio de grandes desvios, e uma convergência em distribuição. |