Inteligência artificial para classificação de espécies de culicídeos baseada em morfometria de asa

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Lima, Vinicio Rodrigues de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/5/5179/tde-16042024-161016/
Resumo: Os culicídeos formam um grupo numeroso e cosmopolita, presentes em toda a região tropical e temperada do planeta. Os gêneros Aedes, Anopheles e Culex se destacam dentro da família dos culicídeos pela sua importância médica, sendo responsáveis pela transmissão de vários patógenos que causam doenças como febre do Nilo, dengue e malária. A forma mais comum de identificação desses insetos é feita com base nos seus caracteres morfológicos de exemplares adultos, junto de chaves taxonômicas. Entretanto, a sistemática é limitada a poucas diferenças anatômicas entre algumas espécies e gêneros, sendo que em algumas espécies, a diferenciação dos indivíduos adultos se restringe a identificação do órgão sexual masculino. Este conjunto de características podem se perder até chegar às mãos de um taxonomista qualificado para realizar essa identificação da forma precisa. Uma vez que se obtém êxito em identificar corretamente espécies de mosquitos, podemos aplicar a Morfometría Geométrica Alar (WGM) como técnica complementar. Uma inovação que tem crescido dentro do campo da WGM é o uso de inteligência artificial. Podemos citar a aplicação de algoritmos de aprendizado de máquina, tais como redes neurais artificiais (ANN - Artificial Neural Network) capazes de realizar o reconhecimento de padrões em imagens e classificar as amostras baseando-se nas suas características morfométricas. Isso demonstra que a área de WGM pode ser beneficiada pelo uso de ferramentas de processamento de imagens digitais e inteligência artificial. Assim, esse trabalho teve como objetivo desenvolver um modelo de inteligência artificial para classificar espécies de culicídeos através de morfometria de asa. Um total de 180 imagens de asas de 6 espécies de culicídeos dos gêneros Culex, Aedes, Wyeomyia e Anopheles foram utilizadas. Nessas imagens anotamos manualmente as coordenadas dos pontos anatômicos usados na morfometria para a identificação de espécies. Para a obtenção automática dos pontos anatômicos, elaboramos um algoritmo na linguagem Python para o processamento das imagens digitais. Em linhas gerais, as veias alares foram segmentadas e as coordenadas dos pontos presentes nas linhas foram obtidas após afinar as veias a um pixel de espessura. Os marcos anatômicos previamente marcados foram integrados ao processamento com Procrustes gerados a partir do pacote Geomorph, em R. Utilizando filtros morfológicos para filtrar o número de pontos previstos, e distância de Mahalanobis, comparando com os TPS anotados dos espécimes e Procrustes de cada espécie, mostramos ser possível a determinação da similaridade de um espécime com as espécies presentes no banco