Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Samartini, André Luiz Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-115501/
|
Resumo: |
O p-value, usado como ferramenta para testar hipóteses, já é parte da linguagem científica pois acredita-se que o mesmo é uma medida da evidência da validade de uma hipótese específica. Muitas vezes o cálculo do p-value - também chamado deníveldescritivo - não leva em consideração a hipótese alternativa, mas apenas a hipótese nula. Discute-se neste trabalho uma medida de evidência, denominada P-value Bayesiano, que além de incorporar em seu cálculo ambas as hipóteses, levaemconsideração opiniões representadas por distribuições de probabilidades a priori no espaço paramétrico. Tratamos de caso de hipóteses nulas precisas, que são definidas por conjuntos do espaço paramétrico cuja dimensão é menor do que oespaçooriginal. Integrais de superfície são usadas no cálculo do P-value Bayesiano. Os exemplos apresentados se restringem a distribuições discretas, mais especificamente a tabelas de contingência e a comparação de distribuições de Poisson |