Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Kaufmann, Pedro Levit |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14032011-155222/
|
Resumo: |
Esta dissertação tem por objetivo a apresentação de um estudo em espaços de Banach sobre os conjuntos nos quais determinados polinômios homogêneos contínuos são fracamente sequencialmente contínuos. Algumas propriedades desses conjuntos são estudadas e ilustradas com exemplos, em maior parte no espaço $l_p$. Obtemos um fórmula para o conjunto de continuidade sequencial fraca do produto de dois polinômios e algumas consequências. Resultados mais fortes são obtidos quando restringimos nossos espaços de Banach a espaços com FDD incondicional e/ou separáveis. Os resultados estudados aqui foram obtidos por R. Aron e V. Dimant em: Aron, R. & Dimant, V., Sets of weak sequential continuity for polynomials, Indag. Mathem., N.S., 13 (3) (2002), 287-299. |