Subespaços complementados e não complementados em espaços de polinômios homogêneos

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Garcia, Raul David Siza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/45005
http://doi.org/10.14393/ufu.di.2025.90
Resumo: The main objective of this work is to study complemented and uncomplemented subspaces of spaces of homogeneous polynomials between Banach spaces. Initially, several classical cases of complemented subspaces are examined in detail. Next, the focus shifts to the subspaces formed by homogeneous polynomials that are compact, weakly compact, and weakly continuous on bounded sets, as well as situations in which these subspaces are not complemented. This study is based on a significant result by I. Ghenciu concerning uncomplemented subspaces of spaces of linear operators, whose proof is developed in detail. Finally, we present the study of its generalized version for polynomials, due to S. Pérez. The polynomial theorems are proved thoroughly, and numerous applications to specific cases are provided. Through this approach, various conditions under which the aforementioned polynomial subspaces are uncomplemented are established.