Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Durigan, Mariana Regina |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11146/tde-15082018-110210/
|
Resumo: |
Helicoverpa armigera (Hübner) was officially reported in Brazil in 2013 causing serious damage to several crops, especially soybean and cotton crops. Because of this severe damage and also because H. armigera is more tolerant to insecticides in compare to other lepidopteran pests in Brazil, there was a significant increase of selection pressure with insecticides in the field. Many cases of insecticide resistance, especially to pyrethroids, have been reported in some countries of the Old World. The main objective of the present study was to characterize the susceptibility of H. armigera and to investigate the mechanisms of its resistance to pyrethroids and indoxacarb in Brazilian populations. Mortality of H. armigera populations was less than 50% when treated with the highest dose of 10 μg a.i./3rd-instar larva of fenvalerate and deltamethrin. Field populations of H. armigera monitored from 2013 to 2016 growing seasons showed mean mortalities of 10 to 40% at the diagnostic dose of 10 μg a.i./3rd-instar larva. The resistance ratio to pyrethroid was 780-fold. The frequency of the chimeric P450 CYP337B3 gene was above 0.95 in all 33 populations screened. The genetic basis of H. armigera resistance to pyrethroids was also investigated. The dominance degree varied from 0.66 to 0.92, i.e., incompletely to completely dominant, and resistance was characterized as autosomal and polygenic. Possible mutations in the sodium channel were investigated, as well as the expression of other P450 genes via RT-qPCR. Two non-synonymous mutations, V937G and Q960H were found, and the genes CYP6AB10, CYP301A, CYP4S13 and CYP321A5 were up-regulated in the Brazilian pyrethroid-resistant strain compared to the susceptible strain. The susceptibility of H. armigera populations to indoxacarb was characterized with a diet overlay bioassay in 3rd-instar larvae. LC50 values ranged from 0.22 (0.16-0.28) μg a.i./cm2 to 0.57 (0.41-0.82) μg a.i./cm2, varying 2.6-fold. The populations were monitored through the 2013-2017 growing seasons, with the diagnostic dose of 6.1 μg a.i./cm2; during the period, the susceptibility to indoxacarb decreased. An indoxacarb-resistant strain was selected under laboratory conditions and showed a resistance ratio of 297.5-fold. These results will contribute to decision-making and implementation of insect resistance-management (IRM) programs in Brazil and other recently invaded countries in Brazil. |