Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Gouveia Júnior, Josaphat Ricardo Ribeiro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18154/tde-02072015-142327/
|
Resumo: |
Pontos de equilíbrio assintoticamente estáveis de sistemas dinâmicos não lineares geralmente não são globalmente estáveis. Na maioria dos casos, há um subconjunto de condições iniciais, chamada região de estabilidade (ou área de atração), cujas trajetórias tendem ao ponto de equilíbrio quando o tempo tende ao infinito. Devido à importância das regiões de estabilidade em aplicações, e motivado principalmente pelo problema de analise de estabilidade transitória em sistemas elétricos de potência, uma caracterização completa da fronteira da região de estabilidade foi desenvolvida. Esta caracterização foi desenvolvida sob a suposição de que o sistema dinâmico é bem conhecido e que os parâmetros de seu modelo são constantes. Na prática, variações de parâmetros ocorrem e bifurcações desta podem ocorrer. Nesta tese, desenvolveremos uma caracterização completa da fronteira da região de estabilidade de sistemas dinâmicos autônomos não lineares admitindo a existência de pontos de equilíbrio não hiperbólicos do tipo Hopf na fronteira da região de estabilidade. Sob certas condições de transversalidade, apresentaremos uma caracterização completa da fronteira da região de estabilidade admitindo tanto a presença de pontos de equilíbrio não hiperbólicos do tipo Hopf como também a existência de órbitas periódicas na fronteira. Ofereceremos também uma caracterização da fronteira da região de estabilidade fraca do ponto de equilíbrio não hiperbólico Hopf supercrítico do tipo zero e uma caracterização topológica da sua região de atração. Além disso, exibiremos resultados relativos ao comportamento da região de estabilidade de um ponto de equilíbrio assintoticamente estável e da sua fronteira na vizinhança do valor crítico de bifurcação do tipo Hopf. |