Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Silva, Naiara Aparecida dos Santos [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/144543
|
Resumo: |
Neste trabalho fazemos o estudo de uma classe de sistemas diferenciais polinomiais quadráticos definidos em R3 que possui um cilindro como superfície algébrica invariante. Mais especificamente, fizemos o estudo da estabilidade e das bifurcações locais dos pontos singulares, utilizando para isto a estrutura do espaço de fase, ou seja, a restrição geométrica dada pela existência do cilindro invariante. Provamos que ocorre uma bifurcação de Hopf sobre o cilindro, que leva a criação de um ciclo limite estável, para determinados valores dos parâmetros. Mostramos também a existência de órbitas homoclínicas, heteroclínicas e centros, contidos nestes cilindros. O estudo apresentado visa contribuir para o entendimento do complicado comportamento dinâmico dos sistemas diferenciais (ou campos vetoriais) polinomiais definidos em R3. |