Análise bayesiana de modelos lineares mistos robustos via amostrador de Gibbs

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Rosa, Guilherme Jordão de Magalhães
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-123417/
Resumo: Os modelos lineares de efeitos mistos têm sido amplamente utilizados na análise de dados onde as respostas estão agrupadas e a suposição de independência entre observações num mesmo grupo não é adequada. Na maioria das aplicações destes modelos é assumida distribuição normal tanto dos resíduos quanto dos efeitos aleatórios, o que os tornam muito sensíveis à presença de valores discrepantes nas observações. No presente trabalho é discutida a utilização de um grupo de distribuições leptocúrticas, denominadas distribuições normal/independentes, como alternativas robustas para as distribuições gaussiana. Toda a apresentação é efetuada dentro de uma perspectiva bayesiana e o Amostrador de Gibbs é utilizado na condução da análise a posteriori. Dois exemplos de aplicações utilizando-se a distribuição t, a distribuição slash e a distribuição normal contaminada são apresentados para ilustrar a metodologia. As distribuições normal/independentes mostram-se como alternativas robustas bastante interessantes para modelos lineares mistos, sendo de fácil implementação dentro de um contexto bayesiano, podendo ser também utilizadas na detecção de valores discrepantes em conjunto de dados.