Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Rodrigues, Agatha Sacramento |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-23082013-172348/
|
Resumo: |
Neste trabalho estudamos o modelo de regressão logística com erro de medida nas covariáveis. Abordamos as metodologias de estimação de máxima pseudoverossimilhança pelo algoritmo EM-Monte Carlo, calibração da regressão, SIMEX e naïve (ingênuo), método este que ignora o erro de medida. Comparamos os métodos em relação à estimação, através do viés e da raiz do erro quadrático médio, e em relação à predição de novas observações, através das medidas de desempenho sensibilidade, especificidade, verdadeiro preditivo positivo, verdadeiro preditivo negativo, acurácia e estatística de Kolmogorov-Smirnov. Os estudos de simulação evidenciam o melhor desempenho do método de máxima pseudoverossimilhança na estimação. Para as medidas de desempenho na predição não há diferença entre os métodos de estimação. Por fim, utilizamos nossos resultados em dois conjuntos de dados reais de diferentes áreas: área médica, cujo objetivo está na estimação da razão de chances, e área financeira, cujo intuito é a predição de novas observações. |